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AT AS COGNITIVE EXTENSION:
RESHAPING HUMAN KNOWING

This study explores Al as a cognitive extension that integrates into human thinking,
forming hybrid architectures with transformative potential for knowledge production.
1t identifies three key epistemic virtues for effective collaboration: critical prompting,
algorithmic literacy, and epistemic discernment. Responsible use is essential to preserve
human agency, avoid illusions of understanding, and prevent scientific monocultures. The
work offers philosophical foundations for Al integration in education, science, and
governance.

Keywords: artificial intelligence, cognitive extension, extended mind, epistemology,
epistemic virtues, philosophy of technology, human-Al collaboration, scientific discovery.

Problem Statement. A radiologist reviews chest X-rays with an Al system
highlighting potential anomalies. Neither the physician’s medical training nor the
algorithm’s pattern recognition alone produces the diagnosis; instead, knowledge
emerges from their collaboration, a phenomenon that challenges traditional
assumptions about where thinking begins and ends.

This pattern repeats across professions. Climate researchers use machine learning
to detect atmospheric patterns spanning decades, while software developers write
code alongside Al assistants that complete their thoughts. These interactions represent
more than mere assistance, signaling fundamental changes in how human cognition
operates.

What happens when the tools we use to think become part of thinking itself?
This article examines Al as cognitive extension, where artificial systems integrate
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into human cognitive processes rather than simply supporting them. Drawing on the
extended mind hypothesis and building upon previous analysis of hybrid
epistemology, we argue that Al systems become functional components of human
cognitive architectures [1; 2].

This integration creates hybrid forms of knowing with significant augmentative
potential, but only if used responsibly. Recent evidence reveals both opportunities
and challenges: while Al extends analytical capabilities beyond biological limits,
heavy reliance correlates with reduced critical thinking and risks creating illusions
of understanding [3; 4]. To grasp these dynamics, we must move beyond simple
human-versus-machine narratives and instead examine specific mechanisms
of cognitive coupling while developing intellectual skills suited to hybrid cognition.
We employ an interdisciplinary approach, combining philosophical analysis
of cognitive extension theory with epistemological critique of Al-mediated knowledge
production and examination of transformations in scientific practice. The analysis
draws on contemporary philosophy of technology, philosophy of science and virtue
epistemology to investigate both the ontological status of Al-enhanced cognition
and its normative implications for intellectual practice.

Current Research Landscape. Otto keeps a notebook. He has Alzheimer’s,
so he writes down important information: addresses, phone numbers, appointment
times. When he needs the Museum of Modern Art’s location, he flips through pages
until he finds it, while Inga, who doesn’t have memory problems, simply recalls
the address from her biological memory.

Clark and Chalmers posed a provocative question: What’s the functional
difference between Otto’s external notebook and Inga’s internal memory [1]? Both
store information, both provide access when needed and both guide decision-making
and action. If we accept that Inga’s biological memory constitutes part of her
cognitive process, why not Otto’s notebook?

Their answer helped establish the extended mind hypothesis: cognitive
processes can extend beyond skull boundaries to include external tools, but this
requires meeting specific criteria. The external resource must be constantly available,
generally reliable, easily accessible and previously endorsed by the user. Otto’s
notebook qualifies because he always carries it, trusts its contents, can quickly find
information and consciously chose to record that information.

Modern Al systems satisfy these criteria with unprecedented sophistication.
Consider how a pathologist now analyzes tissue samples: the Al doesn’t just provide
isolated suggestions but integrates into diagnostic reasoning, available through
hospital interfaces around the clock, reliable across thousands of validated cases,
offering immediate access to complex pattern recognition and endorsed through
medical approval processes.
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Moreover, Al extends beyond simple information storage. Large language
models process queries, generate novel text and engage in multi-turn conversations;
they don’t just retrieve data but manipulate, combine and transform information
in real-time. This points toward what cybernetics researchers call an exocortex:
an artificial extension to biological cognition that provides additional thinking
capabilities [5].

The term gained popularity through science fiction, particularly Charles Stross’s
novel Accelerando [6], but serious academic attention followed. Current
implementations leverage familiar interfaces rather than futuristic brain implants,
yet they demonstrate the concept’s practical potential. Clark describes humans
as «natural-born cyborgs,» constantly merging with technology to enhance cognitive
capacity, and today’s Al systems represent early exocortex implementations pointing
toward futures where boundaries between internal and external thought may blur
entirely [7].

Consider this progression: we began with simple tools where hammers extend
physical reach and written language extends memory. Now Al systems augment
our analytical capabilities, pattern recognition and creative generation, making the
boundary between self and tool increasingly less obvious with each step.

Article Objectives. The main objective of this article is to extend the extended
mind hypothesis to contemporary Al systems and, on this basis, to formulate a set
of epistemic virtues necessary for responsible human-Al cognitive integration.
Specifically, the study aims to: (1) provide philosophical foundations for
understanding Al as a functional component of hybrid cognitive architectures; (2)
identify and justify three key epistemic virtues (critical prompting, algorithmic
literacy, epistemic discernment) that extend traditional intellectual virtues to address
Al-specific challenges; (3) analyse both the augmentative potential and the risks
of Al-mediated cognition (offloading, opacity, illusions of understanding, scientific
monocultures); (4) offer normative implications for the integration of Al in education,
scientific practice, and governance.

Presentation of the main material. The integration mentioned earlier enables
cognitive offloading, the delegation of mental tasks to external systems that frees
human resources for other functions. Programmers using Al assistants focus
on architecture while algorithms handle implementation details, researchers employ
Al to process literature in ways that enable synthesis and students use language
models to clarify concepts in ways that accelerate learning.

Yet concerns about capacity erosion need examination. Consistent delegation
might weaken core intellectual abilities through disuse while creating dependency
that leaves us vulnerable when external resources fail. Historical anxieties about
writing weakening memory or calculators eroding mathematical thinking proved
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largely unfounded, as these tools freed cognitive resources for higher-order tasks;
however, Al represents qualitatively different offloading.

Previous tools delegated narrow functions, whereas current Al systems handle
broad reasoning processes. Recent evidence reveals significant negative correlations
between frequent Al usage and critical thinking scores (n=666 participants, 50
interviews), with cognitive offloading as the mediating mechanism [3]. Higher
education buffers some effects, but younger users and heavy dependents show the
greatest vulnerability.

While these findings remain primarily correlational rather than definitively
causal, they underscore the need for proactive cultivation of intellectual virtues.
Evidence increasingly suggests Al-mediated offloading may erode intellectual
capacities differently than previous technologies, making compensatory skills not
optional enhancement but necessary safeguard. The epistemic virtues we propose
address this challenge directly.

Equally significant is Al opacity, where systems operate through mechanisms
we cannot fully inspect [8]. Deep learning discovers statistical patterns across
massive datasets rather than following human-traceable logic, creating epistemic
vulnerability: the adoption of beliefs based on outputs we cannot thoroughly
evaluate. Moreover, human and Al biases interact dynamically, with biased
Al potentially amplifying human cognitive biases in feedback loops that traditional
safeguards fail to address [9].

When medical Al recommends treatments, legal algorithms assess defendants
or financial systems approve loans, opacity becomes ethically problematic.
Distributed cognition in Al-supported environments introduces cognitive overload,
loss of situational awareness and impaired coordination, all challenges requiring
new intellectual capabilities beyond traditional critical thinking [10].

Developing Intellectual Skills for Hybrid Thinking. When Al becomes part
of thinking rather than separate from it, traditional intellectual skills prove insufficient.
Open-mindedness and critical thinking remain essential, yet hybrid cognition
demands additional capabilities. Three skills become particularly important: critical
prompting, algorithmic literacy and epistemic discernment [11, 12]. These extend
traditional intellectual virtues (careful inquiry, intellectual humility, responsible
belief formation) to address Al-specific challenges like algorithmic opacity, cognitive
offloading and distributed thinking across human-machine systems.

The Art of Critical Prompting. «Tell me about environmental law.» This prompt
generates generic overviews useful for basic orientation but insufficient for serious
analysis. Compare it with: «Analyze three landmark cases from the International
Court of Justice where environmental protection conflicted with economic
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development, focusing on how judges balanced competing claims and the precedents
they established.»

The difference illustrates critical prompting: designing inquiries that guide
Al systems toward reliable, relevant outputs. This skill goes beyond technical
knowledge to include strategic thinking about information needs and communication
clarity.

Effective prompting requires precision through unambiguous language that
clearly defines scope and intent (vague requests produce vague responses). Contextual
framing provides background information that helps Al understand complex requests
appropriately, while constraint specification shapes outputs through explicit format
requirements or analytical frameworks.

Perhaps most importantly, skilled prompting treats Al interaction as dialogue
rather than simple query-response. Initial outputs inform refined questions, and
unexpected responses suggest new inquiry directions. This iterative refinement
resembles Socratic questioning, a method of drawing out knowledge through
successive refinements that helps Al systems generate their most valuable
contributions.

A legal researcher investigating climate litigation might begin broadly: « What
are the main types of climate change lawsuits?» The AI’s response reveals several
categories: rights-based claims, procedural challenges and corporate liability suits.
Each category suggests focused follow-up questions: «Explain how courts have
interpreted the right to a healthy environment in climate cases, with specific examples
from different jurisdictions.»

This approach prevents two common problems. First, it avoids information
overload from receiving too much unfocused material to process eftectively. Second,
it reduces hallucination risk, as Al systems generate more accurate responses when
questions include specific constraints and contextual guidance.

Understanding Algorithmic Logic. Algorithmic literacy doesn’t require
programming expertise, but it demands functional understanding of Al capabilities
and limitations. When IBM Watson recommended cancer treatments that contradicted
medical consensus, the problem wasn’t technical malfunction but stemmed from
misaligned training data and optimization criteria. Oncologists who understood
these limitations could properly evaluate Watson’s suggestions rather than blindly
following them.

Large language models operate probabilistically, generating statistically likely
word sequences rather than retrieving factual information. Such models excel
at pattern recognition and text generation, but struggle with precise calculations
or real-time information. Understanding this distinction helps users leverage
Al strengths while compensating for weaknesses.
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These systems inherit biases from training data, potentially amplifying societal
prejudices in hiring algorithms, criminal justice assessments and medical diagnoses
[13]. Recognition of bias sources enables critical evaluation rather than naive
acceptance.

Different models excel in different domains. Creative writing models may lack
factual accuracy, analytical models might struggle with nuanced communication
and specialized models outperform general-purpose ones in specific tasks.
Algorithmic literacy includes knowing which tools work best for particular purposes.

Consider a journalist researching climate impacts. A general language model
might provide compelling statistics about rising sea levels complete with authoritative-
sounding explanations. Algorithmic literacy suggests verification strategies: cross-
referencing claims with authoritative sources (like IPCC reports), checking for
internal consistency in the Al’s reasoning, identifying potential biases in how climate
data gets presented.

This knowledge enables calibrating trust appropriately: neither blind faith nor
cynical rejection, but informed confidence based on understanding AI’s actual
capabilities.

Epistemic discernment integrates critical prompting and algorithmic literacy
into practical evaluation skills. When Al generates information, how do we assess
its reliability and value?

Source verification provides the foundation. Al-generated claims require
systematic checking against established authorities — not to dismiss Al outputs, but
to treat them as hypotheses requiring confirmation rather than established facts.

Bias detection involves recognizing how training data prejudices might shape
outputs in subtle ways. A model trained primarily on Western academic literature
might have cultural blind spots when discussing global issues, while historical
biases in medical research might influence Al recommendations about treatment
effectiveness across demographic groups.

Coherence checking evaluates whether Al responses maintain logical consistency
throughout complex arguments. Does the reasoning flow logically from premises
to conclusions? Do different parts of a response contradict each other? Are claims
supported by appropriate evidence?

Perhaps most importantly, epistemic discernment maintains intellectual humility,
a healthy skepticism about both Al capabilities and one’s own judgment. Neither
humans nor machines possess perfect knowledge, and effective collaboration requires
recognizing the limitations of both biological and artificial cognition.

These three virtues work synergistically. Skilled prompting elicits higher-quality
Al outputs, algorithmic literacy calibrates appropriate trust levels and epistemic
discernment ensures responsible evaluation of results. Together, they can enable
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cognitive extension that may genuinely enhance human thinking rather than replacing
it with algorithmic dependency. Table 1 summarizes these skills with practical
examples.

Table 1
Essential intellectual skills for Al-enhanced cognition*
Skill Definition Application Example Problem
Addressed
Critical Designing Refining «tell me about Al» to Vague, irrelevant
Prompting |precise, «explain transformer architecture | or shallow
contextualized in LLMs for non-technical responses

queries that guide | audiences, focusing on attention
Al toward useful | mechanisms»

outputs
Algorithmic Ungerstanding Recognizing that an LLM might |Black box
Literacy Al capabilities, | generate plausible but fake opacity;
limitations, biases | citations and verifying them misplaced trust
without technical |independently
expertise
Epistemic Critically Cross-referencing Al climate Misinformation;
Discernment |evaluating Al- statistics with IPCC reports while | uncritical
generated content | checking for presentation bias acceptance
for reliability and
value

* Source: created by author

AD’s Transformation of Scientific Practice. Individual cognitive extension
represents just one dimension of change; Al also reshapes collective scientific
practice, accelerating discovery while raising fundamental questions about
explanation and understanding.

From Theory to Pattern. Traditional science follows familiar rhythms:
researchers observe phenomena, develop hypotheses, design experiments, collect
data and analyze results. Human insight drives each stage. Intuition suggests which
questions matter, creativity designs revealing experiments and interpretation makes
sense of findings.

Al introduces a different approach entirely. Instead of starting with human
theories, machine learning systems analyze massive datasets to identify patterns
that would escape human notice, and these patterns then suggest hypotheses for
experimental testing.
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AlphaFold exemplifies this methodological shift [14]. Rather than beginning
with biological theories about protein folding, the system analyzed structural
relationships across thousands of known proteins and discovered patterns between
amino acid sequences and three-dimensional shapes that solved a fifty-year-old
problem in computational biology. The breakthrough emerged from computational
pattern recognition rather than theoretical insight.

Similar transformations appear across scientific domains. Materials scientists
use Al to predict novel compound properties before synthesis, screening millions
of possibilities rather than following chemical intuition. Climate researchers employ
machine learning to identify atmospheric patterns in decades of observational data,
discovering relationships too complex for traditional analysis. Drug discovery
screens molecular interactions at unprecedented scales, identifying therapeutic
candidates through statistical correlation rather than mechanistic understanding.

Each case inverts traditional methodology: data patterns generate hypotheses
rather than hypotheses being tested against data. This doesn’t eliminate human
involvement but changes its character, shifting from initial theorizing to subsequent
interpretation and validation. But what does this mean for scientific knowledge?
Is pattern recognition sufficient for understanding? Can we trust predictions without
explanatory mechanisms? How do we validate findings when the discovery process
exceeds human comprehension?

The Challenge of Explanation. Al’s predictive power often comes at a cost:
comprehensibility. When deep learning models identify promising drug candidates,
they typically cannot explain why these molecules might work. The system
recognizes statistical patterns across massive chemical databases without providing
causal explanations that humans can evaluate.

This creates what researchers term an explanatory gap [15]. We may know
that a particular treatment shows promise because the Al predicts success, but
we may not understand why in terms of underlying biological mechanisms. The
gap challenges traditional assumptions about scientific knowledge, which emphasized
not just prediction but causal understanding.

Consider cancer research. Al systems can analyze thousands of tumor samples
to identify patients likely to respond to specific treatments. These predictions often
prove accurate, enabling personalized therapy that saves lives. Yet the systems
rarely explain their reasoning in terms of molecular pathways or cellular mechanisms
that oncologists can verify independently.

This introduces what some philosophers call «performative science,» knowledge
validated primarily through successful outcomes rather than theoretical understanding.
The approach works pragmatically but challenges long-held ideals about scientific
explanation.
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Recent analysis reveals deeper risks beyond simple gaps in causal knowledge.
Research demonstrates that Al tools risk creating illusions of understanding
in scientific research, where predictive success leads scientists to overestimate their
explanatory knowledge [4]. When Al systems identify promising patterns or generate
plausible hypotheses, researchers may experience subjective feelings
of comprehension without genuine mechanistic insight. These illusions can obscure
the formation of scientific monocultures — environments where certain methods,
questions and viewpoints dominate, making science less innovative and more
vulnerable to systematic errors.

Furthermore, Al-driven pattern recognition may induce what some term «illusions
of pursuitworthiness,» directing research toward phenomena that appear promising
computationally but lack true explanatory depth. In complex domains like molecular
biology, the explanatory gap may prove permanent rather than bridgeable, requiring
fundamental reconceptualization of what constitutes scientific explanation in an
age of machine learning.

Different research communities respond to these challenges differently. Some
embrace predictive power regardless of explanation, arguing that successful
treatments matter more than theoretical understanding. Others insist that genuine
scientific knowledge requires comprehensible causal mechanisms. Many seek
middle ground, using Al predictions to guide research while working to develop
explanatory frameworks after the fact, yet this middle path becomes precarious
when illusions of understanding prevent recognition of explanatory deficits.

Bridging explanatory gaps represents a new frontier for scientific inquiry, though
one filled with risk. It requires researchers to develop novel theoretical frameworks
that make sense of Al-driven discoveries while remaining vigilant against false
confidence. Sometimes the AI’s «opacity» reflects reality’s genuine complexity,
patterns too intricate for existing theories to accommodate. The challenge becomes
expanding human understanding to match machine recognition capabilities while
avoiding monocultures that favor computational tractability over genuine explanation.

This dynamic creates intriguing feedback loops: Al identifies patterns that
suggest new theoretical directions, human researchers develop explanatory
frameworks to account for these patterns and improved theories guide better
Al training and interpretation. The process potentially accelerates both discovery
and understanding, though the pace of pattern recognition often outstrips explanatory
development — risking the illusions documented by recent empirical research.

Conclusion. Al transforms both scientific and everyday thinking, demanding
new intellectual virtues. This article’s central contribution extends virtue epistemology
to hybrid cognition, identifying capabilities essential for Al-augmented knowledge
production.
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Critical prompting, algorithmic literacy and epistemic discernment extend
traditional intellectual virtues (curiosity, open-mindedness, intellectual humility)
to meet the specific challenges of human-Al collaboration. Classical virtue
epistemology focuses on individual thinking; these hybrid virtues address thinking
distributed across biological minds and artificial systems. In such extended systems,
virtue includes not just internal dispositions but also practices for engaging external
computational resources responsibly.

Recent empirical evidence validates this virtue-based approach. As Al systems
grow more sophisticated and persuasive, technical safeguards alone prove insufficient
[3, 4]. Individuals must develop intellectual character traits enabling critical
engagement with machine outputs while resisting both uncritical acceptance and
reflexive rejection. These virtues represent necessary conditions for genuine
knowledge in the age of cognitive hybridization, not optional enhancements.

Toward a Hermeneutics of Opacity. Building on the recognition of essential
epistemic opacity, where the path from input to output in deep learning systems
remains fundamentally inaccessible even in principle, we confront a deeper
interpretive challenge [8, 16]. Rather than pursuing ever-greater transparency through
post-hoc explainability techniques that often trade off accuracy, an alternative stance
becomes necessary: one that treats opaque Al outputs as phenomena amenable
to hermeneutic engagement without reduction to underlying mechanisms.

We propose the concept of a hermeneutics of opacity —a distinctive interpretive
practice that learns to understand model conclusions relationally. This happens
through iterative attention to surface patterns, distributed representations, emergent
behaviors and statistical textures, even as the generative logic remains irreducible
to humanly traceable steps. This approach draws inspiration from hermeneutic
traditions that grapple with texts whose full meaning exceeds authorial intention
or explicit reconstruction, but adapts them to the specific epistemic texture of large-
scale neural architectures [17].

In practice, such a hermeneutics might involve tracking how outputs shift across
prompt variations, mapping conceptual clusters in latent space via probing techniques,
attending to analogical resonances between model behavior and domain phenomena
and cultivating sensitivity to the model’s «style» of reasoning as an emergent
signature rather than a defect. Far from passive acceptance of black-box verdicts,
this represents an active and critical mode of sense-making that preserves human
agency while acknowledging the structural limits of mechanistic explanation.

This proposal is preliminary and will be developed more fully in forthcoming
work. For the present analysis, it underscores that epistemic discernment in hybrid
cognition must extend beyond verification and bias detection to include hermeneutic
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competence: the cultivated ability to read opaque systems productively without
demanding their full demystification.

Implications and Future Directions. Understanding Al as cognitive extension
provides a framework for responsible navigation of this transformation. Rather than
viewing Al as external threat or mere productivity tool, this perspective recognizes
it as a new medium for thought itself, one that reshapes thinking processes rather
than simply assisting existing ones.

Human-AlI integration creates hybrid cognitive architectures with significant
augmentative potential. Pattern recognition operates at scales exceeding biological
cognition, information processing accelerates beyond unaided limits and creative
generation combines human insight with algorithmic exploration. These capabilities
represent genuine expansion of intellectual capacity — contingent on cultivating
appropriate epistemic virtues.

Successfully navigating hybrid cognition requires the intellectual capabilities
we propose. Critical prompting enables effective Al collaboration, algorithmic
literacy provides functional understanding of system capabilities and limitations
and epistemic discernment integrates these into evaluation frameworks that maintain
human agency while leveraging machine capabilities. Together, these skills harness
pattern-recognition power while preserving critical oversight, helping ensure human
judgment remains the ultimate arbiter of knowledge.

Scientific practice illustrates both promise and challenges. Al identifies patterns
at unprecedented scales and generates hypotheses across domains, accelerating
discovery. Yet explanatory gaps persist: we often know what works without
understanding why. Bridging these gaps requires developing theoretical frameworks
that make sense of Al-driven discoveries while cultivating hermeneutic competence
for productive engagement with opacity.

Several questions demand continued attention. How can educational systems
cultivate Al-specific intellectual skills across populations? What governance
frameworks ensure responsible cognitive extension while preserving innovation?
How might hybrid intelligence serve human flourishing? These questions lack
simple answers but demand serious engagement from researchers, educators,
policymakers and citizens alike.

The co-evolution of human intelligence with artificial offers unprecedented
opportunities for expanding our collective capacity to understand the world and
improve it. Medical diagnoses become more accurate. Scientific discovery
accelerates. Creative expression explores new territories, and educational access
expands. Success depends on thoughtful integration that maintains what makes
human thinking valuable while leveraging machine capabilities.
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The framework of cognitive extension provides philosophical foundations for
navigating this transformation — benefiting educational institutions, technology
designers and policymakers alike. The choices we make about cognitive extension
today will shape human thinking for generations. Neither uncritical embrace nor
reflexive rejection serves us well; instead, we need approaches that recognize
potential and acknowledge challenges, guided by epistemic virtues adequate to the
hybrid age.
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Juxauyvkuii Andpini Bacunvoeuu, actiipant Kadenpu KyabTypOIorii
Ta (inocodii kynerypu, Hamionansuuii yHiBepcuteT «O1echka Mo TeXHIKay,
VYkpaina

Yopna Jlioia Banepiiena, noxtop GpiiocoPpchbKux HAYK, TOIEHT, Ipodecop
kadenpu iHGopmariiHoi AiSUTBHOCTI Ta MeliakoMyHikaiii, Hamionansamii
yHiBepcuTeT «Oiecbka NOMITeXHIKa», YKpaiHa

IITYYHUAHA IHTEJEKT SIK KOTHITUBHE PO3IIIMPEHHA:
INEPEOCMUCJIIEHHA JIIOACBKOI'O 3HAHHA

L cmamms pozensaoae wimyyHull iHmeneKkm K KOSHIMuUeHe po3uupents, wo inme-
2PYEMBCA 8 II0OCbKE MUCLEHHS, CIBOPIoIOYU 2iOPUOHT apXimeKmypu 3 8eIUKUM NOMeHYi-
anom 05 8UPOOHUYMEA 3HAHb. BUSHAYEHO Mpu KIY08i IHMeleKmyaibHi 4eCHOmu 04
ehexmuenoi cnisnpayi. Kpumudne npoMOmy8ants, areopumminia SpamomHicms ma enic-
memiuna po3oipaueicmo. Bionogioanibhe UKOpUCmManisi Heobxione, uwjoo 36epeemu it00CbKy
A2eHMHICMb, YHUKHYMU L0311 pO3YMIHHA Md HAYKOSUX MOHOKYIbmyp. Poboma nponownye
Ginocoghcoki 3acaou sionosioanvroi inmeepayii LI 6 oceimy, nayky ma ynpasninHs mex-
HONO2IAMU.

Kniouogi cnosa: wmyunuil inmenexkm, KOCHIMUSHE POSUUPEHHS, POSUUUPEHULL PO3YM,
enicmemonoeis, enicmemiymi yechomu, Qinocoghis mexuixu, cnienpays aroounu ma LI

SO
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